APPLICATION OF NATURAL LANGUAGE PROCESSING AND DEEP LEARNING APPROACHES TO NATURAL LANGUAGE CONTAINED IN SEC FILING DATA

Tornike Tsereteli

Computational Linguist, Reportix **Dennis Knochenwefel** CEO, Reportix

OUTLINE

1. Introduction: What is ...

- Artificial Intelligence (AI)
- Machine Learning (ML) •
- Deep Learning (DL) •
- Natural Language Processing (NLP)?
- 2. The Feasibility Study
- 3. Results & Evaluation
- 4. Problems & Obstacles
- 5. Outlook

INTRODUCTION

ARTIFICIAL INTELLIGENCE (AI)

- Intelligent machine
- Goal: solve problems (better than/like) a human
- Solutions:
 - Autonomous vehicles
 - Financial services
 - Generating art
 - Image recognition
 - Medical diagnosis
 - Natural language processing
 - Personal assistants
 - Playing games

MACHINE LEARNING (ML)

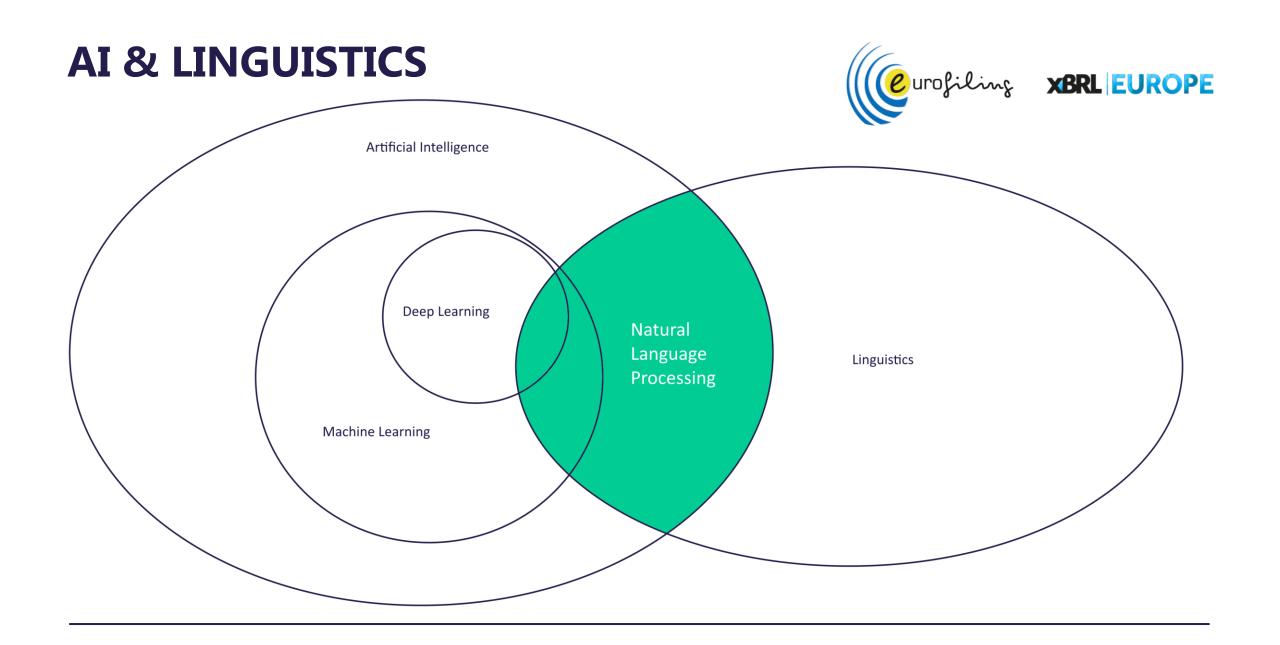
- Feeding an algorithm data in order to make intelligent decisions in new situations
- Pros:
 - Easy to interpret results
 - Works well on small datasets
 - Computationally (financially) inexpensive
- Cons:
 - Manual feature (characteristic) engineering = time consuming & expert knowledge required
 - Bad performance on unseen situations

DEEP LEARNING (DL)

- "Deep" neural networks (algorithms) make intelligent decisions in new situations & on new domains
- Pros:
 - State-of-the-art performance
 - Scales well: more data (usually) = better performance
 - No feature engineering (networks learn features independently) •
 - Good performance in new situations
- Cons:
 - Computationally (financially) expensive
 - Hyperparameter tuning (time consuming)
 - Black-box

NATURAL LANGUAGE **PROCESSING (NLP)**

- NLP is concerned with the interaction between computers and human (natural) languages
- Examples:
 - "I heard the music in my room" Relationship Extraction
 - "The cat ate the mouse. It was small." Coreference Resolution
 - "I'd recommend the product to anyone who loves wasting money." Sentiment Analysis
- NLP tasks:
 - Automatic Summarization, Coreference Resolution, Machine Translation, Natural Language Generation/Inference/Understanding, Named Entity Recognition, Relationship Extraction, Question Answering, Sentiment Analysis, Speech Recognition, Text-to-speech



What's so deep about Deep Learning? What's the difference to Machine Learning?

Deep neural networks

DEEP NEURAL NETWORK (DNN)

"Non-deep" feedforward neural network

Deep neural network



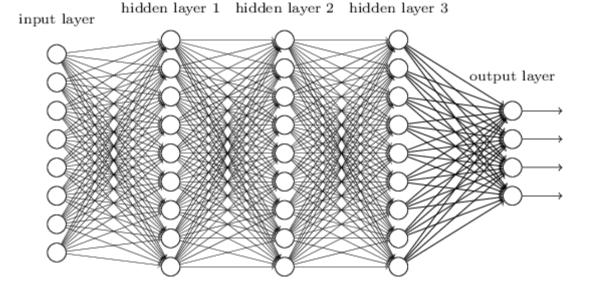
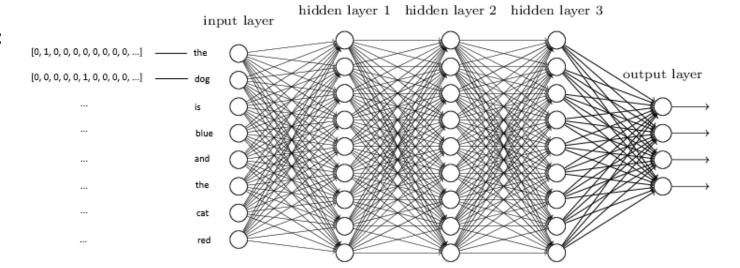


Illustration adapted from: http://neuralnetworksanddeeplearning.com/chap5.html

- One-hot-encoding
- Vector dimension = vocabulary size
- No semantic knowledge

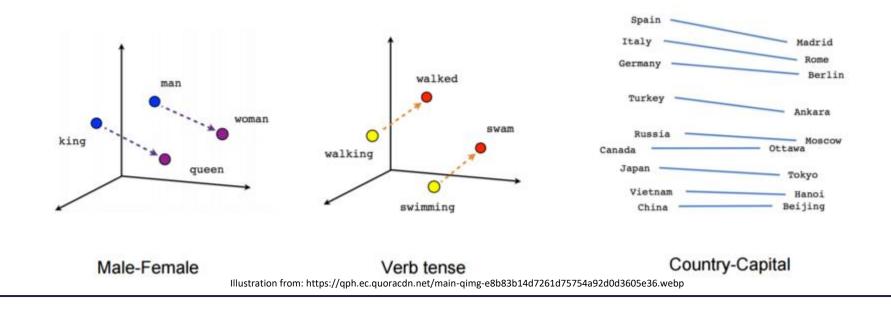


 Cat & dog have no relation

WORD EMBEDDINGS

"You shall know a word by the company it keeps" (Firth, 1957)

 Dense vector representations of words (Mikolov et al., 2013) [0.4232, 0.1212, 0.9483, ...]



ALTERNATIVE EMBEDDINGS

- Character embeddings (Santos and Zadrozny, 2014)
 - Sum of the embeddings of each n-gram
- Lexical & morphological features as n-grams

< "wal", "alk", "lki", "kin", "ing", "walking">

[0.695, 0.114, ...] [0.432, 0.122, ...] [0.792, 0.094, ...] [0.932, 0.663, ...] [0.575, 0.123, ...] [0.955, 0.219, ...]

- Sentence/paragraph embeddings
- Special combination (concatenation, addition, etc.) of word embeddings in a sentence/paragraph
- Learned embedding representation through general language tasks

THE FEASIBILITY STUDY

REVENUE PREDICTION ON SEC FILINGS

- **Hypothesis:** it is possible given the natural language in the Management Discussion and Analysis (Item 7) of 10-K SEC filings to predict revenue increase or decrease of the following 10-K using a simple neural network architecture
- Why?
- SEC filing analysis is time consuming
- Prove that even complex language used in SEC filings can be processed by a machine
- Potential automatic detection of outliers
- Show future implications of what's possible

SIMPLE ARCHITECTURE

- Binary classification task
- Single LSTM architecture based on (Zaremba et al., 2015)
- Used pre-trained word embeddings
 - LexVec word embeddings (Salle et al., 2016)
 - English Wikipedia 2015 + NewsCrawl
 - 7B tokens, 368,999 words, 300 dimensions

- Dataset: 2903 positive & 2903 negative filings
- Train 80%, test 10%, validation 10%
- Trained on CPU (under 3 hours)
- Hyperparameters:
 - LSTM-units depth of the network
 - Batch size # of training examples fed into network per epoch
 - Doc length # of words used from MDA
 - Epochs # of traversals of training set
 - Iteration # of times batches are fed into model for training
 - Learning rate amount of adjustment to weights (lower = slower) •
 - Learning rate decay decrease of learning rate per epoch •

RESULTS AND EVALUATION

PRELIMINARY RESULTS

Network	Units	Batch Size	Doc. length	Epochs	Iterations	Learning rate	Learning rate decay	Accuracy
LSTM	512	64	100	1	15	0.1	1/2	2.4%
LSTM	1024	64	100	1	100	0.1	1/2	79%
LSTM	256	64	1000	1	10	0.1	1/2	32.4%
LSTM	128	64	5000	5	5	0.1	1/2	n/a Computationally infeasible

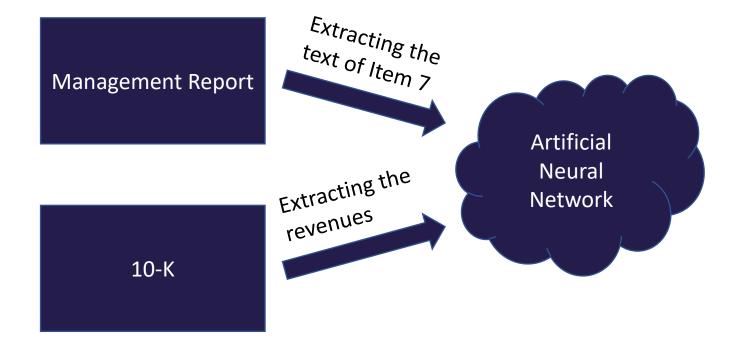
- Which features worked well?
- LSTM units, document length
- Which didn't?
- Batch size, epochs, iterations

EVALUATION

- What do the results tell us?
 - Inconclusive results = no baseline
 - Not enough data
 - Computationally expensive
 - Unstructured data difficult to structure
 - Preprocessing expensive (time consuming)
 - Room for improvement with...
 - structured data
 - advanced NLP approaches
 - more computational power

PROBLEMS AND OBSTACLES

DATA SOURCES FOR TRAINING THE AI



MANAGEMENT REPORT (MDA)

X Not available as XBRL

X Not available as XML

X Item 7 extraction from text

X Need to implement legacy parser

MANAGEMENT REPORT (MDA)

ITEM 7: Management's Discussion and Analysis of Financial Condition and Results of Operation

 22 <div style="margin:0in 0in .0001pt;"><hr size="3" width="100%" noshade align="left" style="color:#010101;"></div> </div>

<!-- SE0.=1,FOLIO='22',FILE='C:\JMS\105933\17-15494-1\task8552844\15494-1-bm.htm',USER='105933',CD='Aug 24 18:47 2017' -->

<br clear="all" style="page-break-before:always;">

<div style="font-family:Times New Roman;">

Table of Contents

style="margin:0in 0in .0001pt;">Item 7. <i>Management’s Discussion and Analysis of Financial Condition and Results of Operations</i>.</

<u>RESULTS OF OPERATIONS</u>

We manufacture, market and sell beauty products including those in the skin care, makeur fragrance and hair care categories which are distributed in over 150 countries and territories. The following table is a comparative summar of operating results for fiscal 2017, 2016 and 2015 and reflects the basis of presentation described in <i>Item 8. Financial Statements and Supplementary Data – Note 2 – Summary of Significant Accounting Policies </i>and<i>> Note 21 – Segment Data </i>and<i>> Related Information</i></or>

presented. Products and services that do not meet our definition of skin care, makeup, fragrance and hair care have been included in the "other" category.

>

 :

center" style="margin:0in 0in .0001pt;text-align:center;"><font size="1" face="Times New Roman" style="font-size:8.0pt;font-</pre>

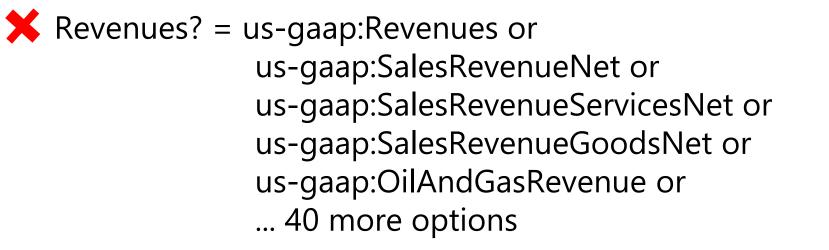
weight:bold;">Year Ended June 30

center" style="margin:0in 0in .0001pt;text-align:center;"> :

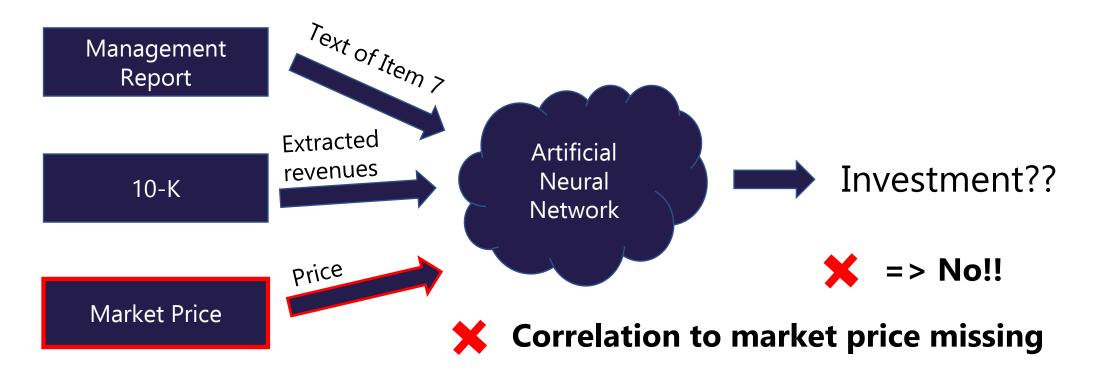
><font size="1" face="TimeWidth=555%" </to>

<td width="2%" valign="bottom" style="padding:0in 0in 0in; width: 2.5%

REVENUES

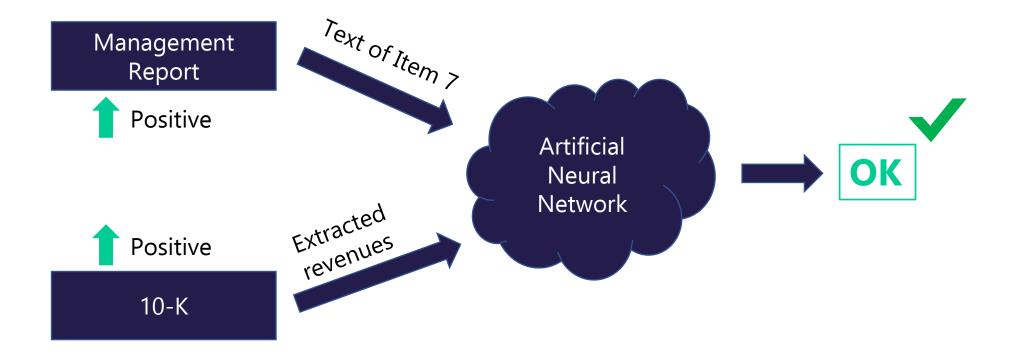


INVESTMENT DECISION?

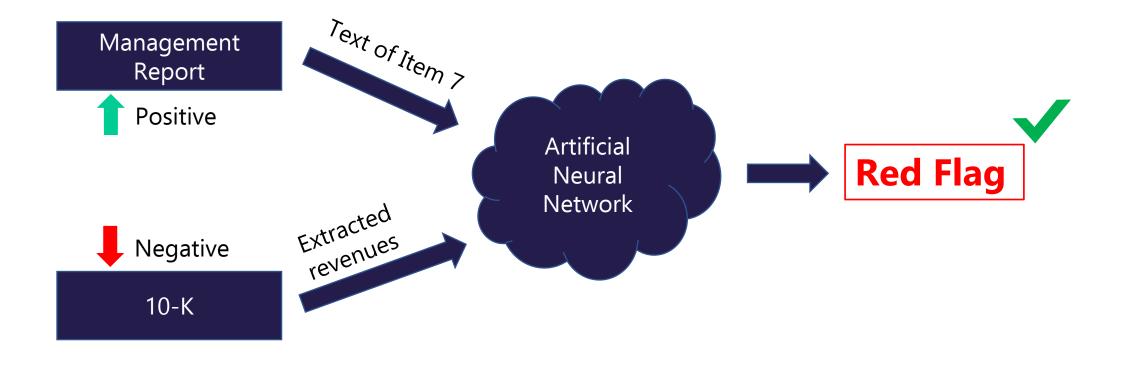


"Price is what you pay. Value is what you get." (Warren Buffett)

REGULATOR: OUTLIER DETECTION?



REGULATOR: OUTLIER DETECTION?



OUTLIER DETECTION

X Need for more data

Long-term tracking of credibility

Contributes to a sound outlier detection

OUTLOOK

FUTURE APPLICATIONS

- Outlier detection; gets better with...
 - more data
 - multi-class classification
 - additional natural language sources
- Self monitoring / benchmarking
- Auditing
- Legal act reporting implications

ALTERNATIVE APPROACHES

- Instead of (manually) engineering natural language data, use data with naturally occurring markers or features
- Pros:
 - Abundance of data
 - No annotation needed (inexpensive)
- Cons:
 - Difficult to find or hypothesize such features

POSSIBLE FUTURE WORK

- InferSent (Conneau et al., 2017): generic sentence representations that can outperform task specific implementations
- Task: given 2 sentences, determine their relationship between [contradiction, neutral or entailment]
- Diverse semantic knowledge included in sentence representations •

"A man inspects the uniform of a figure in some East Asian country."

- contradiction -
- "The man is sleeping."

POSSIBLE FUTURE WORK

- **DisSent** (Nie et al., 2018): naturally annotated sentence relationships allow robust sentence representations; state-of-the-art performance
- Naturally occurring markers used to incorporate semantic knowledge into sentence embeddings
- Task: given 2 sentences, predict which discourse marker (and, but, because, etc.) was used

"She's late to class she missed the bus."

"She's good at soccer ____ she missed the goal."

POSSIBLE FUTURE WORK

- Train task-specific word/sentence embeddings
- More complex architectures:
- Attention Networks (Yang et al., 2016), which focus on "important" parts of a sentence
- Gated Recurrent Unit (Cho et al., 2014), which is a simpler variant of LSTM
- Train on GPU
- More/better hyperparameter tuning
- Quickly advancing field with many new approaches possible

THANK YOU

EUROFILING XBRL WEEK WARSAW 28-30 MAY 2018