Working Draft

XBRL-COREP project

Proposal for a COREP metamodel(
)
(April 2005)
Working Draft dated 2005-04-14
Table of Contents

31
Overview

52
UML diagram

63
UML classes description

63.1
Template

63.2
TemplateStructure

63.3
Measure, MeasureCollection

73.4
Dimension

73.5
Domain

73.6
DomainValue

73.7
Attribute

73.8
TemplateConstraint

83.9
StructureConstraint

83.10
DimensionConstraint (MeasureConstraint, AttributeConstraint)

83.11
CrossDimensionConstraint

93.12
Artefact

1 Overview
The main objective of the XBRL-COREP project is to translate the COmmon REPort framework for the new Solvency Ratio into an XBRL taxonomy.

The framework is based on a set of templates that represent the “reporting schema” of the requested data. The data described by the templates are characterised by a multi-dimensional structure. In other words, each data inside these templates has a measure that represents the observable phenomenon and is identified by a set of coordinates that represent the “dimensions” of the data itself.

XBRL 2.1 specification does not contain the rules to be used in order to formally describe a multi-dimensional data. In fact, a major extension of current XBRL specification is on-going.
During the XBRL-COREP project a way to describe multi-dimensional COREP templates has been identified that XBRL experts deem compatible with the future evolution of the specification. This way is based on some modelling assumptions and on their handling in XBRL terms.

It is common opinion world-wide and in the software market (e.g. OLAP) that every multi-dimensional data can be described according to a unified set of rules. This set of rules, taken all together, is usually called metadata model, or metamodel, or information model.

With reference to the COREP templates, the modelling rules can be summarized as follows.
· The reporting framework is represented by a set of templates.
· Each template defines the characteristics of a set of interrelated data referring to a specific aspect of the reporting framework. More specifically, each template describes the “structural” characteristics of the data and the “constraints” the data itself should obey.

· Each data in a template has a “measure” (i.e. the observable phenomenon for which a value is expected – for example: “Exposure value”) that can be reported classified by some “dimensions” (e.g. “Exposure Type”, “Exposure class”). The “template structure” is the set of all dimensions used to classify all the measures in the template.
· There are attributes that are used to better qualify each measure. “Number of decimals”, the “precision”, “the unit of measure” are all example of attribute used to qualify the measures.

· Each of these “concepts” (measures, dimensions, attributes) are defined on a “domain” that represents the set of values the concepts themselves can assume. More than one concept can share the same domain. For example “CRM Receiver” and “CRM Provider” are two dimensions that share values taken from the “exposure class” domain.
· For each of these “concepts” there are one or more human-readable labels as well as references to external documentation that adds semantics to the concept.

· The dimension values can be organised in a hierarchical way.

· Some templates contain data with different classification structure. It is necessary to capture these differences and to specify the measures for which the classification structure is different from (i.e. a subset of) the template structure.

· Some templates have restrictions on the set of allowable values for certain dimensions (for example, the “CRM provider” dimension is allowed to assume only a subset of the values of the “exposure class” domain).
· Some templates have restrictions on the allowable combinations of values among dimensions and/or measures (for example, in the “CRM-IO” template there are two cross-dimension restrictions on the combination of “Approach” dimension and “CRM receiver” dimension).

· There are logical and/or mathematical constraints among measures inside a template or across different templates.
* * *
What precedes is the narrative form of COREP modelling rules. A formalised version of them is given in figure 1 using the UML technique. A plain text explanation of each displayed UML class follows.
This set of rules can also be used for other reporting schemas organised in templates containing one- or multi-dimensional data.

2 UML diagram

[image: image1.emf]Dimension

Template

Domain

DomainValue

Artefact

- composedBy

Template

Structure

- hasStructure

1

Measure

- measureChild

*

Attribute

- qualifies

*

Uncoded

Domain

Coded

Domain

DecimalPrecisionUnit

EntityPeriod

- hasDomain

1

*

- hasDomain

1

*

Template

Constraint

CrossDimensionConstraint

+ Measure

+ Dimension[n]

+ DimensionValue[n]

+ IsCombinationAllowed/prohibited

DimensionConstraint

+ Dimension

+ Value

+ IsValueAllowed/Prohibited

StructureConstraint

+ Measure

+ Dimension

+ IsDimensionAllowed/Prohibited

- hasConstraint*

- domainChild

*

- parent-child

Measure

Collection

- hasDimension

*

*

- hasMeasureCollection

1*

- references

- hasLabel

- hasDomain

1

*

Attribute

Constraint

Measure

Constraint

External

Doc

Label

Figure 1
3 UML classes description
3.1 Template

The Template defines a set of data to be reported. Examples of Template(s) are: "Standardized approach - Capital requirements (STA-CR)","IRB approach - Capital requirements (IRB-CR)"

A Template references its structure through the hasStructure relationship linking itself to the TemplateStructure Class.
A Template references its exceptions through the hasConstraint relationship linking itself to the TemplateConstraints class.

3.2 TemplateStructure

TemplateStructure is the class that describes the structure of a template, i.e. the collection of related measures belonging to the template and the set of dimensions that classify them.

The hasMeasureCollection relationship links a TemplateStructure to the MeasureCollection representing the set of measures belonging to the template.

The multidimensional nature of the referenced measures is represented by the hasDimension relationship linking the TemplateStructure class to the Dimension class. In fact, the set of Dimension(s) linked to a TemplateStructure define the “classification structure” of all the Measure(s) contained into the MeasureCollection.

For one-dimensional Template(s), the corresponding TemplateStructure have no hasDimension relationships.

3.3 Measure, MeasureCollection

A Measure is any observable phenomenon contained into a Template for which a value is requested.

A set of interrelated Measure(s) is organised into a MeasureCollection (measureChild relationship).

Each Measure can have a list of attached attributes (qualifies relationship) whose aim is to make explicit some characteristics of the Measure itself.

Each Measure is defined on a domain (i.e. it can assume values belonging to that domain) through the hasDomain relationship.

3.4 Dimension

The Dimension class defines a dimension. Examples of Dimension(s) are: "Exposure class", "Exposure type", "Obligor Grade". Two dimensions (Entity and Period) have been highlighted into the diagram because of their presence into the XBRL specification.

An important characteristic of a Dimension is its domain, i.e. the set of allowable values for that dimension. The hasDomain relationship links a Dimension to its Domain.

In general, more than one Dimension can be defined on the same Domain. For example, “Country of Sales” and “Country of production” are Dimension(s) that refer to the same Domain (“list of countries”).

3.5 Domain

A Domain class is a collection of a set of values (or coordinates) that describes some category of the real world. Examples of domains are: “Countries”, “currencies”, etc.

Each Domain can be coded or uncoded. For a coded domain, the collection of its values is made explicit through the domainChild relationship.

An example of CodedDomain is “Exposure type”. An example of UncodedDomain is “Obligor grade”

3.6 DomainValue

A DomainValue is each valid element (or coordinate) that belongs to a Domain. For example “Spain”, “Italy”, “France” are DomainValue(s) of the “Countries” Domain; "Central Governments and Central Banks" is a DomainValue of the "Exposure class" Domain.

3.7 Attribute

The Attribute class defines a characteristic that qualifies a Measure. Examples of Attribute(s) are: “unit of measure”, “precision”, etc.

Each Attribute has an associated Domain (hasDomain relationship) form which it takes its values.

Three attributes (Decimal, Precision and Unit) have been highlighted into the diagram due to their presence into the XBRL specification.

3.8 TemplateConstraint

The TemplateConstraint class represents the collection of exceptions contained into the template definition(
).

Without constraints, the structure of each template is a “regular” one. That means that any given measure into the template is expected to have a value for each combination of the coordinates, i.e. the scope of the template is represented by the “cartesian product” of all the participating dimensions. Moreover, each measure, dimension or attribute involved into the Template is expected to assume any possible value taken from its domain.

Every exception (or constraint) adds some restriction to this “regularity”. More specifically, three types of exceptions have been identified:

•
restrictions on the structure of a given measure (StructureConstraint);

•
restrictions on the allowable values for a given dimension (DimensionConstraint), measure (MeasureConstraint) or attribute (AttributeConstraint);
•
restrictions on the allowable combination of values for the dimensions of a given measure (CrossDimensionConstraint).
3.9 StructureConstraint

The StructureConstraint class is aimed to describe restrictions on the breakdown structure of a given Measure. This constraint is useful to describe situations in which a template contains data with different classification structure.

An example of such a type of constraint is present into the Operational loss (OPR-LOSS) template. All measures except the “Threshold applied in data collection” measure are classified by “Business line” and “Event type”. The “Threshold applied in data collection” is classified by “business line” only.

3.10 DimensionConstraint (MeasureConstraint, AttributeConstraint)

The DimensionConstraint (MeasureConstraint, AttributeConstraint) class is aimed to describe restrictions on the allowable values of a Dimension (Measure, Attribute) when it is used into a given Template. In fact, without this type of restriction, the allowable values for a Dimension (Measure, Attribute) are all and only the values belonging to the Domain of that Dimension (Measure, Attribute).

An example of such a type of constraint is present into the CRM-IO template. In fact, the “CRM receiver” dimension is defined on the “Exposure class” domain but the allowed values are only a subset (7 elements) of the complete set of values.

3.11 CrossDimensionConstraint

The CrossDimensionConstraint class is aimed to describe restrictions on combinations of Dimension values and/or Measures.

An example of such a type of constraint is present into the CRM-IO template. In fact, the combination “Approach=FIRB” and “CRM Receiver=Retail” is not allowed and for this combination no measure values are expected.

3.12 Artefact

The Artefact is an abstract class ancestor of Template, TemplateStructure, MeasureCollection, Measure, Dimension, Attribute, Domain and DomainValue. Its purpose is to describe, in a unique place, properties and relationships common to its descendant.

In particular, the diagram shows the following relationships that can be attached to each descendant:

•
hasLabels: represent the association between each Artefact and a set of labels;

•
references: represents the association between each Artefact and external documentation;
•
parent-child: describes hierarchical organization of Artefact(s);

•
composedBy: describes calculation relationships among Artefact(s).

� Written by M.Romanelli

� It is worth noting that the TemplateConstraints represents only the so called “formal” or “structural” constraints. Other logical and/or mathematical constraints can be defined among elements inside a template. This is the main aim of the “composedBy” relationship on the Artefact class.

PAGE
ii
BI-proposal-COREP-Metamodel-2005-04-14.doc

